Dynamical analysis of a two prey-one predator system with quadratic self interaction /
In this paper we investigate the dynamical properties of a two prey-one predator system with quadratic self interaction represented by a three-dimensional system of differential equations by using tools of computer algebra. We first investigate the stability of the sin- gular points. We show that th...
Shranjeno v:
Main Authors: | , , , |
---|---|
Format: | Book Chapter |
Jezik: | English |
Teme: | |
Online dostop: | https://ac.els-cdn.com/S0096300318303047/1-s2.0-S0096300318303047-main.pdf?_tid=f5a62249-46b0-4558-a515-fa9dffe9d2c0&acdnat=1524647696_c0f7f5696042d7d4fdaeebbeb34828a0 |
Sorodne knjige/članki: | Vsebovano v:
Applied mathematics and computation |
Oznake: |
Označite
Brez oznak, prvi označite!
|
LEADER | 01898naa a2200277 ib4500 | ||
---|---|---|---|
001 | 1024305756 | ||
003 | SI-MaCOB | ||
005 | 20180425000000.0 | ||
008 | 180425s2018 xxu|||||||||||||| ||eng c | ||
024 | 7 | 1 | |a 10.1016/j.amc.2018.03.123 |2 doi |
041 | 0 | |a eng |b eng | |
080 | |a 519.17 |2 UDCMRF 2011 | ||
245 | 1 | 0 | |a Dynamical analysis of a two prey-one predator system with quadratic self interaction / |c I. Kusbeyzi Aybar ... [et al.]. |
300 | |a str. 118-132. | ||
500 | |a Soavtorji: O.O. Aybar, M. Dukarić, B. Ferčec. | ||
504 | |a Bibliografija: str. 131. | ||
504 | |a Abstract. | ||
520 | |a In this paper we investigate the dynamical properties of a two prey-one predator system with quadratic self interaction represented by a three-dimensional system of differential equations by using tools of computer algebra. We first investigate the stability of the sin- gular points. We show that the trajectories of the solutions approach to stable singular points under given conditions by numerical simulation. Then, we determine the condi- tions for the existence of the invariant algebraic surfaces of the system and we give the invariant algebraic surfaces to study the flow on the algebraic invariants which is a useful approach to check if Hopf bifurcation exists. | ||
653 | 0 | |a Predator-prey |a Stability analysis |a Hopf bifurcation | |
700 | 1 | |a Aybar, Ilknur Kusbeyzi. |4 aut |0 247629923 | |
700 | 1 | |a Aybar, Orhan Ozgur. |4 aut |0 247630435 | |
700 | 1 | |a Dukarić, Maša. |4 aut |0 202438499 | |
700 | 1 | |a Ferčec, Brigita. |4 aut |0 112221027 | |
773 | 0 | |t Applied mathematics and computation |b [Print ed.] |d New York : Elsevier, 1975- |x 0096-3003 |g Vol. 333 (2018), str. 118-132 | |
856 | 4 | 1 | |u https://ac.els-cdn.com/S0096300318303047/1-s2.0-S0096300318303047-main.pdf?_tid=f5a62249-46b0-4558-a515-fa9dffe9d2c0&acdnat=1524647696_c0f7f5696042d7d4fdaeebbeb34828a0 |
040 | |a FEKRS |b slv |c SI-MaIIZ |e ppiak |