Dynamical analysis of a two prey-one predator system with quadratic self interaction /

In this paper we investigate the dynamical properties of a two prey-one predator system with quadratic self interaction represented by a three-dimensional system of differential equations by using tools of computer algebra. We first investigate the stability of the sin- gular points. We show that th...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Main Authors: Aybar, Ilknur Kusbeyzi. (Author), Aybar, Orhan Ozgur. (Author), Dukarić, Maša. (Author), Ferčec, Brigita. (Author)
Format: Book Chapter
Jezik:English
Teme:
Online dostop:https://ac.els-cdn.com/S0096300318303047/1-s2.0-S0096300318303047-main.pdf?_tid=f5a62249-46b0-4558-a515-fa9dffe9d2c0&acdnat=1524647696_c0f7f5696042d7d4fdaeebbeb34828a0
Sorodne knjige/članki:Vsebovano v: Applied mathematics and computation
Oznake: Označite
Brez oznak, prvi označite!
LEADER 01898naa a2200277 ib4500
001 1024305756
003 SI-MaCOB
005 20180425000000.0
008 180425s2018 xxu|||||||||||||| ||eng c
024 7 1 |a 10.1016/j.amc.2018.03.123  |2 doi 
041 0 |a eng  |b eng 
080 |a 519.17  |2 UDCMRF 2011 
245 1 0 |a Dynamical analysis of a two prey-one predator system with quadratic self interaction /   |c I. Kusbeyzi Aybar ... [et al.].  
300 |a str. 118-132. 
500 |a Soavtorji: O.O. Aybar, M. Dukarić, B. Ferčec.  
504 |a Bibliografija: str. 131.  
504 |a Abstract.  
520 |a In this paper we investigate the dynamical properties of a two prey-one predator system with quadratic self interaction represented by a three-dimensional system of differential equations by using tools of computer algebra. We first investigate the stability of the sin- gular points. We show that the trajectories of the solutions approach to stable singular points under given conditions by numerical simulation. Then, we determine the condi- tions for the existence of the invariant algebraic surfaces of the system and we give the invariant algebraic surfaces to study the flow on the algebraic invariants which is a useful approach to check if Hopf bifurcation exists. 
653 0 |a Predator-prey  |a Stability analysis  |a Hopf bifurcation 
700 1 |a Aybar, Ilknur Kusbeyzi.   |4 aut  |0 247629923 
700 1 |a Aybar, Orhan Ozgur.   |4 aut  |0 247630435 
700 1 |a Dukarić, Maša.   |4 aut  |0 202438499 
700 1 |a Ferčec, Brigita.   |4 aut  |0 112221027 
773 0 |t Applied mathematics and computation  |b [Print ed.]  |d New York : Elsevier, 1975-  |x 0096-3003  |g Vol. 333 (2018), str. 118-132 
856 4 1 |u https://ac.els-cdn.com/S0096300318303047/1-s2.0-S0096300318303047-main.pdf?_tid=f5a62249-46b0-4558-a515-fa9dffe9d2c0&acdnat=1524647696_c0f7f5696042d7d4fdaeebbeb34828a0 
040 |a FEKRS  |b slv  |c SI-MaIIZ  |e ppiak